Sum-of-squares chordal decomposition of polynomial matrix inequalities

Author:

Zheng YangORCID,Fantuzzi GiovanniORCID

Abstract

AbstractWe prove decomposition theorems for sparse positive (semi)definite polynomial matrices that can be viewed as sparsity-exploiting versions of the Hilbert–Artin, Reznick, Putinar, and Putinar–Vasilescu Positivstellensätze. First, we establish that a polynomial matrix P(x) with chordal sparsity is positive semidefinite for all $$x\in \mathbb {R}^n$$ x R n if and only if there exists a sum-of-squares (SOS) polynomial $$\sigma (x)$$ σ ( x ) such that $$\sigma P$$ σ P is a sum of sparse SOS matrices. Second, we show that setting $$\sigma (x)=(x_1^2 + \cdots + x_n^2)^\nu $$ σ ( x ) = ( x 1 2 + + x n 2 ) ν for some integer $$\nu $$ ν suffices if P is homogeneous and positive definite globally. Third, we prove that if P is positive definite on a compact semialgebraic set $$\mathcal {K}=\{x:g_1(x)\ge 0,\ldots ,g_m(x)\ge 0\}$$ K = { x : g 1 ( x ) 0 , , g m ( x ) 0 } satisfying the Archimedean condition, then $$P(x) = S_0(x) + g_1(x)S_1(x) + \cdots + g_m(x)S_m(x)$$ P ( x ) = S 0 ( x ) + g 1 ( x ) S 1 ( x ) + + g m ( x ) S m ( x ) for matrices $$S_i(x)$$ S i ( x ) that are sums of sparse SOS matrices. Finally, if $$\mathcal {K}$$ K is not compact or does not satisfy the Archimedean condition, we obtain a similar decomposition for $$(x_1^2 + \cdots + x_n^2)^\nu P(x)$$ ( x 1 2 + + x n 2 ) ν P ( x ) with some integer $$\nu \ge 0$$ ν 0 when P and $$g_1,\ldots ,g_m$$ g 1 , , g m are homogeneous of even degree. Using these results, we find sparse SOS representation theorems for polynomials that are quadratic and correlatively sparse in a subset of variables, and we construct new convergent hierarchies of sparsity-exploiting SOS reformulations for convex optimization problems with large and sparse polynomial matrix inequalities. Numerical examples demonstrate that these hierarchies can have a significantly lower computational complexity than traditional ones.

Funder

Clarendon Scholarship

AFOSR Young Investigator Program

Imperial College Research Fellowship

Publisher

Springer Science and Business Media LLC

Subject

General Mathematics,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3