1. Agrawal, R., Gehrke, J., Gunopolos, D., et al. (1998). Automatic subspace clustering of high dimensional data for data mining application. In Proceeding of the ACM SIGMOD international conference on management of data (pp. 94–105).
2. Anders, K.H. (2003). A hierarchical graph-clustering approach to find groups of objects. In The 5th workshop on progress in automated map generalization (pp. 1–8).
3. Cormen, T.H., Leiserson, C.E., Rivest, R.L., et al. (2009). Introduction to algorithms (3rd ed.). Cambridge: The MIT Press.
4. Costa, A.F.B.F., Pimentel, B.A., de Souza, R.M.C.R. (2013). Clustering interval data through kernel-induced feature space. Journal of Intelligent Information Systems, 40(1), 109–140.
5. Ester, M., Kriegel, H.P., Sander, J., Xu, X. (1996). A density-based algorithm for discovering clusters in large spatial data sets with noise. In The 2th international conference on knowledge discovery and data mining (pp. 226–231). Portland.