Investigating Periodic Table Interpolation for the Rational Design of Nanoalloy Catalysts for Green Hydrogen Production from Ammonia Decomposition

Author:

Parker Luke A.,Richards Nia,Bailey Liam,Carter James H.,Nowicka Ewa,Pattisson Samuel,Dummer Nicholas F.,He Qian,Lu Li,Kiely Christopher J.,Golunski Stanislaw E.,Roldan Alberto,Hutchings Graham J.

Abstract

AbstractDeveloping highly active catalysts for the decomposition of ammonia to produce hydrogen is an important goal in the context of renewable energy. Allied with this is a need for identification strategies to efficiently design novel catalysts integral to ensuring rapid progress in this research field. We investigated the efficacy of N–binding energy and periodic table interpolation to predict active bimetallic nanoparticle catalysts. Supported iron-platinum and iron-palladium were identified and experimentally shown to be more active than their monometallic analogues. Atomic resolution electron microscopy indicated that the most active catalyst (5 wt% Fe80Pt20/γ-Al2O3) was principally formed of alloyed nanoparticles. It restructured during testing, yet no activity loss was noted at 20 h time-on-line. While these findings show that periodic table interpolation may be a viable tool for identifying active combinations of metals, the activity of the catalysts in the current work were not able to outperform the Ru/Al2O3 benchmark. Further catalyst optimization or refinement of reaction descriptors may facilitate the development of catalysts with higher intrinsic activity than the current state-of-the-art catalysts. Graphical Abstract

Funder

ERC

Publisher

Springer Science and Business Media LLC

Subject

General Chemistry,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3