Uncertainty-aware non-invasive patient–ventilator asynchrony detection using latent Gaussian mixture generative classifier with noisy label correction

Author:

Wang Chenyang,Luo Ling,Aickelin Uwe,Berlowitz David J.,Howard Mark E.

Abstract

AbstractPatient–ventilator asynchrony (PVA) refers to instances where a mechanical ventilator’s cycles are desynchronised from the patient’s breathing efforts, and may result in patient discomfort and potential ineffective ventilation. Typically, they are identified with constant monitoring by trained clinicians. Such expertise is often limited; therefore, it is desirable to automate PVA detection with machine learning methods. However, there are three major challenges to applying machine learning to the problem: data collected from non-invasive ventilation are often noisy, there exists high variability between patients or between setting changes, and manual annotations of PVA events are not always consistent. To produce meaningful inference from such noisy data, a model needs to not only provide a measure of uncertainty, but also take into account potential inconsistencies in the training signal it is based on. In this work, we propose a conditional latent Gaussian mixture generative classifier with noisy label correction, which is capable of capturing variations within and between classes, providing well-calibrated class probabilities, detecting unlikely input instances that deviates from training data, while also taking into account possible mislabelling of event classes. We show that our model is able to match the performance of a well-tuned gradient boosting classifier, but also produce better calibrated predictions and smaller performance variability between patients.

Funder

University of Melbourne

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3