Author:
Huang Zhenzhen,Zhu Dongqing,Xiao Shuo
Funder
National Natural Science Foundation of China
Postgraduate Research & Practice Innovation Program of Jiangsu Province
Publisher
Springer Science and Business Media LLC
Reference40 articles.
1. Isinkaye, F.O., Folajimi, Y.O., Ojokoh, B.A.: Recommendation systems: principles, methods and evaluation. Egypt. Inform. J. 16(3), 261–273 (2015)
2. Tao, Y., Gao, M., Yu, J., Wang, Z., Xiong, Q., Wang, X.: Predictive and contrastive: dual-auxiliary learning for recommendation. arXiv preprint arXiv:2203.03982 (2022)
3. Cao, J., Sheng, J., Cong, X., Liu, T., Wang, B.: Cross-domain recommendation to cold-start users via variational information bottleneck. In: 2022 IEEE 38th International Conference on Data Engineering (ICDE), pp. 2209–2223. IEEE (2022)
4. Zhu, F., Wang, Y., Chen, C., Zhou, J., Li, L., Liu, G.: Cross-domain recommendation: challenges, progress, and prospects. In: IJCAI 2021. International Joint Conferences on Artificial Intelligence (2021)
5. Zhu, F., Chen, C., Wang, Y., Liu, G., Zheng, X.: DTCDR: a framework for dual-target cross-domain recommendation. In: CIKM, pp. 1533–1542 (2019)