Abstract
AbstractThis collection of papers provides insights into methods and data currently available to quantify the benefits associated with estuarine habitat restoration projects in the northern Gulf of Mexico, USA, with potential applicability to other coastal systems. Extensive habitat restoration is expected to occur in the northern Gulf of Mexico region over the next several decades through funding associated with the 2010 Deepwater Horizon oil spill. Papers in this section examine the development of vegetation, soil properties, invertebrate fauna, and nekton communities in restored coastal marshes and provide a conceptual framework for applying these findings to quantify the benefits associated with compensatory marsh restoration. Extensive meta-analysis of existing data for Gulf of Mexico coastal habitats further confirms that structured habitats such as marsh, submerged aquatic vegetation, and oyster reefs support greater nekton densities than nonvegetated bottom habitat, with oyster reefs supporting different species assemblages than marsh and submerged aquatic vegetation. Other papers demonstrate that while vegetation cover can establish rapidly within the first 5 years of restoration, belowground parameters such as root biomass and soil organic matter remain 44% to 92% lower at restored marshes than reference marshes 15 years after restoration. On average, amphipod and nekton densities are also not fully restored until at least 20 and 13 years following restoration, respectively. Additional papers present methods to estimate the benefits associated with marsh restoration projects, nekton productivity associated with coastal and estuarine habitats, and the benefits associated with the removal of derelict crab traps in Gulf of Mexico estuaries.
Publisher
Springer Science and Business Media LLC
Subject
Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献