Localized Water Quality Improvement in the Choptank Estuary, a Tributary of Chesapeake Bay

Author:

Fisher Thomas R.ORCID,Fox Rebecca J.,Gustafson Anne B.,Koontz Erika,Lepori-Bui Michelle,Lewis James

Abstract

AbstractChesapeake Bay has a long history of nutrient pollution resulting in degraded water quality. However, we report improvements in chlorophyll a in surface waters and dissolved oxygen in bottom waters at one of three estuarine stations in the Choptank tributary of Chesapeake Bay. We updated a previous nutrient budget for the estuary constructed for reference year 1998 using rates of atmospheric deposition, inputs of watershed diffuse sources (primarily agriculture), and discharges of point sources (primarily human waste) for reference year 2017. Parallel trends suggest that improvements in water quality at the one station were likely due to 20% reductions in direct atmospheric deposition on the estuary’s surface and 78–95% reductions in wastewater N and P due to installation of tertiary treatment. The agricultural sector, the dominant source of N and P, appeared to provide little contribution to improved water quality during this period. Although efforts to reduce nutrient losses from agriculture are common throughout the Choptank basin, widespread reductions from agricultural diffuse sources could make large contributions to improved water quality at all stations in the estuary. The response in the Choptank is similar to those observed elsewhere in the USA, Europe, Australia, and New Zealand due to improved wastewater treatment. Similar to our findings, the upper Potomac River of Chesapeake Bay saw improvements driven by reductions in atmospheric deposition. Unfortunately, few studies elsewhere have shown improvements in water quality due to agricultural management. The data presented here indicate that public and industrial investments in reductions of atmospheric emissions and upgrades to wastewater treatment plants have improved estuarine water quality in the Choptank.

Funder

USDA CSREES

Directorate for Biological Sciences

Division of Environmental Biology

Publisher

Springer Science and Business Media LLC

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3