ADAMTS1 and HSPG2 mRNA levels in cumulus cells are related to human oocyte quality and controlled ovarian hyperstimulation outcomes

Author:

Ma Yerong,Jin Jiamin,Tong Xiaomei,Yang Weijie,Ren Peipei,Dai Yongdong,Pan Yibin,Zhang YinLi,Zhang SongyingORCID

Abstract

Abstract Purpose The study investigated potential correlations between the expression levels of ADAMTS1 and HSPG2 in cumulus cells (CCs) and controlled ovarian hyperstimulation (COH) outcomes. Methods RT-PCR was used to determine ADAMTS1 and HSPG2 mRNA levels in mice CCs at different timepoints (0, 4, 8, 12, and 16 h) after human chorionic gonadotropin (hCG) injection, and in CCs after RNAi treatment. Women with polycystic ovary syndrome (PCOS) (n = 45) and normal ovulatory controls (n = 103) undergoing IVF/ICSI were recruited. Relative ADAMTS1 and HSPG2 mRNA levels were measured by RT-PCR. Moreover, correlations of ADAMTS1 and HSPG2 levels with COH outcomes were analyzed. Results At different timepoints after hCG treatment, ADAMTS1 mRNA had the highest level at 12 h, whereas HSPG2 showed opposite profiles to ADAMTS1 with the lowest level at 12 h. HSPG2 expression was upregulated after ADAMTS1 RNAi treatment The PCOS group had higher HSPG2 and lower ADAMTS1 expression levels than controls. In normal ovulatory women (control group), a higher expression of ADAMTS1 and lower expression of HSPG2 were associated with more mature oocytes, transplantable embryos, and good quality embryos, whereas higher transplantable embryo rates and good quality embryo rates were obtained only with lower HSPG2 expression. ROC curves showed the co-measurement of ADAMTS1 and HSPG2 had a better predictive power than separate analyses. Conclusion The dynamic profiles of ADAMTS1 and HSPG2 were inversely correlated in CCs. In PCOS and normal ovulatory patients, higher ADAMTS1 and lower HSPG2 expression levels in CCs were related to better COH outcomes.

Funder

Key Research and Development Program of Zhejiang Province

National Natural Science Foundation of China

Zhejiang Province Medical Science and Technology Plan Project

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Developmental Biology,Obstetrics and Gynecology,Genetics,Reproductive Medicine,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3