Adaptive data-driven models to best predict the likelihood of live birth as the IVF cycle moves on and for each embryo transfer

Author:

Grzegorczyk-Martin Véronika,Roset Julie,Di Pizio Pierre,Fréour Thomas,Barrière Paul,Pouly Jean Luc,Grynberg Michael,Parneix Isabelle,Avril Catherine,Pacheco Joe,Grzegorczyk Tomasz M.

Abstract

Abstract Purpose To dynamically assess the evolution of live birth predictive factors’ impact throughout the in vitro fertilization (IVF) process, for each fresh and subsequent frozen embryo transfers. Methods In this multicentric study, data from 13,574 fresh IVF cycles and 6,770 subsequent frozen embryo transfers were retrospectively analyzed. Fifty-seven descriptive parameters were included and split into four categories: (1) demographic (couple’s baseline characteristics), (2) ovarian stimulation, (3) laboratory data, and (4) embryo transfer (fresh and frozen). All these parameters were used to develop four successive predictive models with the outcome being a live birth event. Results Eight parameters were predictive of live birth in the first step after the first consultation, 9 in the second step after the stimulation, 11 in the third step with laboratory data, and 13 in the 4th step at the transfer stage. The predictive performance of the models increased at each step. Certain parameters remained predictive in all 4 models while others were predictive only in the first models and no longer in the subsequent ones when including new parameters. Moreover, some parameters were predictive in fresh transfers but not in frozen transfers. Conclusion This work evaluates the chances of live birth for each embryo transfer individually and not the cumulative outcome after multiple IVF attempts. The different predictive models allow to determine which parameters should be taken into account or not at each step of an IVF cycle, and especially at the time of each embryo transfer, fresh or frozen.

Funder

Gedeon Richter

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Developmental Biology,Obstetrics and Gynecology,Genetics,Reproductive Medicine,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3