Digitizing cities for urban weather: representing realistic cities for weather and climate simulations using computer graphics and artificial intelligence

Author:

Aliaga DanielORCID,Niyogi Dev

Abstract

AbstractDue to their importance in weather and climate assessments, there is significant interest to represent cities in numerical prediction models. However, getting high resolution multi-faceted data about a city has been a challenge. Further, even when the data were available the integration into a model is even more of a challenge due to the parametric needs, and the data volumes. Further, even if this is achieved, the cities themselves continually evolve rendering the data obsolete, thus necessitating a fast and repeatable data capture mechanism. We have shown that by using AI/graphics community advances we can create a seamless opportunity for high resolution models. Instead of assuming every physical and behavioral detail is sensed, a generative and procedural approach seeks to computationally infer a fully detailed 3D fit-for-purpose model of an urban space. We present a perspective building on recent success results of this generative approach applied to urban design and planning at different scales, for different components of the urban landscape, and related applications. The opportunities now possible with such a generative model for urban modeling open a wide range of opportunities as this becomes mainstream.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3