A Bioinspired Robot Growing like Plant Roots

Author:

Bianchi GiovanniORCID,Agoni Aldo,Cinquemani Simone

Abstract

AbstractPlants are usually considered static organisms, but they can perform a wide range of movements that can be a source of inspiration for robots. The roots’ growing motion is the most noteworthy since they are excellent diggers that can move in unstructured environments and navigate past barriers. Furthermore, root growth has a high energy efficiency since it penetrates the soil at its tip, adding new material without displacing the already grown portion, minimizing the energy dissipation due to friction and lowering the inertia. A robot inspired by the growth of roots could be used in search and rescue or environmental monitoring. The design of a soft robot inspired by root growth is presented in this article. The robot body consists of a cylindrical plastic membrane folded inside itself. The robot body is inflated, and its tip is everted, expanding its length as air is blown from the base. Velcro straps are placed on the membrane’s exterior surface to keep it folded. The head is positioned inside the tip, which houses the mechanism that controls the growth direction. It consists of housing for two balloons that are selectively inflated, and their expansion applies pressure on the exterior surface, opening the Velcro straps and determining the growth direction. The robot was constructed, and a kinematic model of its motion in the plane was created and compared with experimental data. The error in predicting the turning angle is only 5%, and the resulting predicted position differs on average by 55 mm on a total length of 850 mm.

Funder

Politecnico di Milano

Publisher

Springer Science and Business Media LLC

Subject

Bioengineering,Biophysics,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3