Optimum trajectory learning in musculoskeletal systems with model predictive control and deep reinforcement learning

Author:

Denizdurduran BeratORCID,Markram Henry,Gewaltig Marc-Oliver

Abstract

AbstractFrom the computational point of view, musculoskeletal control is the problem of controlling high degrees of freedom and dynamic multi-body system that is driven by redundant muscle units. A critical challenge in the control perspective of skeletal joints with antagonistic muscle pairs is finding methods robust to address this ill-posed nonlinear problem. To address this computational problem, we implemented a twofold optimization and learning framework to be specialized in addressing the redundancies in the muscle control . In the first part, we used model predictive control to obtain energy efficient skeletal trajectories to mimick human movements. The second part is to use deep reinforcement learning to obtain a sequence of stimulus to be given to muscles in order to obtain the skeletal trajectories with muscle control. We observed that the desired stimulus to muscles is only efficiently constructed by integrating the state and control input in a closed-loop setting as it resembles the proprioceptive integration in the spinal cord circuits. In this work, we showed how a variety of different reference trajectories can be obtained with optimal control and how these reference trajectories are mapped to the musculoskeletal control with deep reinforcement learning. Starting from the characteristics of human arm movement to obstacle avoidance experiment, our simulation results confirm the capabilities of our optimization and learning framework for a variety of dynamic movement trajectories. In summary, the proposed framework is offering a pipeline to complement the lack of experiments to record human motion-capture data as well as study the activation range of muscles to replicate the specific trajectory of interest. Using the trajectories from optimal control as a reference signal for reinforcement learning implementation has allowed us to acquire optimum and human-like behaviour of the musculoskeletal system which provides a framework to study human movement in-silico experiments. The present framework can also allow studying upper-arm rehabilitation with assistive robots given that one can use healthy subject movement recordings as reference to work on the control architecture of assistive robotics in order to compensate behavioural deficiencies. Hence, the framework opens to possibility of replicating or complementing labour-intensive, time-consuming and costly experiments with human subjects in the field of movement studies and digital twin of rehabilitation.

Funder

EPFL Blue Brain Project Fund

European Union’s Horizon 2020 Framework Programme

Publisher

Springer Science and Business Media LLC

Subject

General Computer Science,Biotechnology

Reference68 articles.

1. Ackermann M, Schiehlen W (2006) Dynamic analysis of human gait disorder and metabolical cost estimation. Arch Appl Mech 75(10–12):569–594

2. Andrychowicz M, Denil M, Gomez S, Hoffman MW, Pfau D, Shillingford Schaul T, Defreitas N (2016) Learning to learn by gradient descent by gradient descent. Adv Neural Inf Process Syst 58:3981–3989

3. Asatryan DG (1965) Functional tuning of the nervous system with control of movement or maintenance of a steady posture. 1. mechanographic analysis of the work of the joint on execution of a postural task. Biophysics 10:925–935

4. Bernstein N (1966) “The co-ordination and regulation of movements,” The co-ordination and regulation of movements,

5. Botvinick M, Ritter S, Wang JX, Kurth-Nelson Z, Blundell C, Hassabis D (2019) Reinforcement learning, fast and slow. Trends Cognit Sci 23(5):408–422

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3