Composite Nanoarchitectonics of Magnetic Silicon Dioxide-Modified Chitosan for Doxorubicin Delivery and In Vitro Cytotoxicity Assay

Author:

Nassar Mostafa Y.ORCID,El-Salhy Hamed I.,El-Shiwiny W. H.,Abdelaziz Gamal,El-Shiekh R.

Abstract

AbstractDeveloping drug delivery carriers for highly selective, controlled, and sustained release of the anti-cancer drugs is one of the crucial issues in the cancer strive. We herein report the synthesis of Fe3O4 (M) and SiO2 (S) nanoparticles and their nanocomposites with chitosan (CS) for high loading efficiency and subsequent release potentiality of Doxorubicin (DOX) anticancer drug. The as-synthesized nanostructures were characterized using Fourier transform infrared (FT-IR), X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HR-TEM), and thermal analysis techniques. The average crystallite sizes of the as-prepared M, S, CS/M, CS/S, and CS/M/S nanostructures were found to be 5, 15, 70, 22, and 29 nm, respectively. The loading and cumulative release of Doxorubicin for the produced nanostructures were examined, and the results exhibited loading efficacy of 71%, 95%, 96%, 79%, 17%, and 42% for M, S, CS, CS/M, CS/S, and CS/M/S nanostructures, respectively. The Doxorubicin releasing results revealed a promising cumulative release percentages at pH 4.2 and pH 5 compared with those at pH 7.4. At pH 4.2, the cumulative release percentages for DOX-M, DOX-S, DOX-CS, DOX/M, and DOX/CS/M/S were 94%, 96%, 92%, 95%, and 98%, respectively. While the corresponding percentages at pH 5 were 97%, 90%, 46%, 43%, and 70%. The percentage for DOX-CS/S was 60% at pH 5, though. The in-vitro cytotoxicity of M-DOX, CS-DOX, and M/CS-DOX was explored against two human cancer cell lines (MCF-7 and Hep-G2) using SRB (Sulforhodamine B) assay. The DOX-loaded M/CS exhibited the highest cytotoxicity and its IC50 values were 2.65 and 2.25 μg/mL against Hep-G2 and MCF-7 cell lines, respectively, compared to the corresponding values of 5.1 and 4.5 μg/mL for free DOX. The results indicated that M/CS nanocomposite is a good candidate as drug delivery nano-carrier for the Doxorubicin anti-cancer drug.

Funder

Benha University

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3