Author:
Shi Yao,Yu Wanchunzi,Stufken John
Publisher
Springer Science and Business Media LLC
Subject
Computational Theory and Mathematics,Statistics, Probability and Uncertainty,Statistics and Probability,Theoretical Computer Science
Reference22 articles.
1. Abebe, H.T., Tan, F.E.S., Breukelen, G.J.P.V., et al.: Robustness of Bayesian D-optimal design for the logistic mixed model against misspecification of autocorrelation. Comput. Stat. 29(6), 1667–1690 (2014). https://doi.org/10.1007/s00180-014-0512-3
2. Atkinson, A.C., Woods, D.C.: Designs for generalized linear models. In: Dean, A., Morris, M., Stufken, J., et al. (eds.) Handbook of Design and Analysis of Experiments. Chapman and Hall/CRC, New York (2015)
3. Breslow, N.E., Clayton, D.G.: Approximate inference in generalized linear mixed models. J. Am. Stat. Assoc. 88(421), 9–25 (1993). https://doi.org/10.2307/2290687
4. Carrière, I., Bouyer, J.: Choosing marginal or random-effects models for longitudinal binary responses: application to self-reported disability among older persons. BMC Med. Res. Methodol. 2, 15 (2002). https://doi.org/10.1186/1471-2288-2-15
5. Green, P.J.: Penalized likelihood for general semi-parametric regression models. Int. Stat. Rev. 55, 245–259 (1987). https://doi.org/10.2307/1403404