Maximum likelihood estimation for discrete latent variable models via evolutionary algorithms

Author:

Brusa Luca,Pennoni Fulvia,Bartolucci Francesco

Abstract

AbstractWe propose an evolutionary optimization method for maximum likelihood and approximate maximum likelihood estimation of discrete latent variable models. The proposal is based on modified versions of the expectation–maximization (EM) and variational EM (VEM) algorithms, which are based on the genetic approach and allow us to accurately explore the parameter space, reducing the chance to be trapped into one of the multiple local maxima of the log-likelihood function. Their performance is examined through an extensive Monte Carlo simulation study where they are employed to estimate latent class, hidden Markov, and stochastic block models and compared with the standard EM and VEM algorithms. We observe a significant increase in the chance to reach global maximum of the target function and a high accuracy of the estimated parameters for each model. Applications focused on the analysis of cross-sectional, longitudinal, and network data are proposed to illustrate and compare the algorithms.

Funder

Università degli Studi di Milano - Bicocca

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3