A closed-form filter for binary time series

Author:

Fasano AugustoORCID,Rebaudo GiovanniORCID,Durante DanieleORCID,Petrone Sonia

Abstract

AbstractNon-Gaussian state-space models arise in several applications, and within this framework the binary time series setting provides a relevant example. However, unlike for Gaussian state-space models — where filtering, predictive and smoothing distributions are available in closed form — binary state-space models require approximations or sequential Monte Carlo strategies for inference and prediction. This is due to the apparent absence of conjugacy between the Gaussian states and the likelihood induced by the observation equation for the binary data. In this article we prove that the filtering, predictive and smoothing distributions in dynamic probit models with Gaussian state variables are, in fact, available and belong to a class of unified skew-normals (sun) whose parameters can be updated recursively in time via analytical expressions. Also the key functionals of these distributions are, in principle, available, but their calculation requires the evaluation of multivariate Gaussian cumulative distribution functions. Leveraging sun properties, we address this issue via novel Monte Carlo methods based on independent samples from the smoothing distribution, that can easily be adapted to the filtering and predictive case, thus improving state-of-the-art approximate and sequential Monte Carlo inference in small-to-moderate dimensional studies. Novel sequential Monte Carlo procedures that exploit the sun properties are also developed to deal with online inference in high dimensions. Performance gains over competitors are outlined in a financial application.

Funder

Università degli Studi di Torino

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,Statistics, Probability and Uncertainty,Statistics and Probability,Theoretical Computer Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3