1. Ahn, S., Korattikara, A., Liu, N., Rajan, S., Welling, M.: Large-scale distributed Bayesian matrix factorization using stochastic gradient MCMC. In In: Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and data mining, pp. 9–18. ACM, New York (2015)
2. Baker, J., Fearnhead, P., Fox, E.B., Nemeth, C.: sgmcmc: An R package for stochastic gradient Markov Chain Monte Carlo. J. Stat. Softw. (2017).
https://arxiv.org/abs/1710.00578
3. Bardenet, R., Doucet, A., Holmes, C.: On Markov chain Monte Carlo methods for tall data. J. Mach. Learn. Res. 18(47), 1–43 (2017)
4. Bierkens, J., Fearnhead, P., Roberts, G.: The zig-zag process and super-efficient sampling for Bayesian analysis of big data. (2016).
https://arxiv.org/abs/1607.03188
5. Blackard, J.A., Dean, D.J.: Comparative accuracies of artificial neural networks and discriminant analysis in predicting forest cover types from cartographic variables. Comput. Electron. Agric. 24(3), 131–151 (1999)