Ontology-based information extraction for juridical events with case studies in Brazilian legal realm

Author:

de Araujo Denis AndreiORCID,Rigo Sandro José,Barbosa Jorge Luis Victória

Publisher

Springer Science and Business Media LLC

Subject

Law,Artificial Intelligence

Reference44 articles.

1. Amardeilh F, Laublet P, Minel J-L (2005) Document annotation and ontology population from linguistic extractions. In: Proceedings of the 3rd international conference on knowledge capture. ACM, pp 161–168, Recuperado de http://dl.acm.org/citation.cfm?id=1088651

2. Ashley K (2014) Applying argument extraction to improve legal information retrieval. In: ArgNLP, Recuperado de http://ceur-ws.org/Vol-1341/paper3.pdf

3. Baader F, Horrocks I, Sattler U (2009) Description logics. In: Handbook on ontologies. Springer, pp 21–43. Recuperado de http://link.springer.com/chapter/10.1007/978-3-540-92673-3_1

4. Berners-Lee T, Fielding R, Masinter L (2004) Uniform resource identifier (URI): generic syntax. Recuperado de http://www.rfc-editor.org/info/rfc3986

5. Bick E (2000) The parsing system“ Palavras”: automatic grammatical analysis of Portuguese in a constraint grammar framework. Aarhus Universitetsforlag, Aarhus

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exploring the Power of AI-Driven Decision Making in the Judicial Domain;Advances in Media, Entertainment, and the Arts;2024-01-10

2. Towards a Methodology for Comparing Legal Texts Based on Semantic, Storytelling and Natural Language Processing;Lecture Notes on Data Engineering and Communications Technologies;2024

3. A Review of Document-Level Multi-Event Extraction Methods;2023 9th International Conference on Big Data and Information Analytics (BigDIA);2023-12-15

4. CRSAtt: By Capturing Relational Span and Using Attention for Relation Classification;Applied Sciences;2022-11-01

5. An adaptable, high-performance relation extraction system for complex sentences;Knowledge-Based Systems;2022-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3