The consumer’s demand functions defined to study contingent consumption plans

Author:

Angelini Pierpaolo,Maturo FabrizioORCID

Abstract

AbstractGiven two probability distributions expressing returns on two single risky assets of a portfolio, we innovatively define two consumer’s demand functions connected with two contingent consumption plans. This thing is possible whenever we coherently summarize every probability distribution being chosen by the consumer. Since prevision choices are consumption choices being made by the consumer inside of a metric space, we show that prevision choices can be studied by means of the standard economic model of consumer behavior. Such a model implies that we consider all coherent previsions of a joint distribution. They are decomposed inside of a metric space. Such a space coincides with the consumer’s consumption space. In this paper, we do not consider a joint distribution only. It follows that we innovatively define a stand-alone and double risky asset. Different summary measures of it characterizing consumption choices being made by the consumer can then be studied inside of a linear space over $${\mathbb {R}}$$ R . We show that it is possible to obtain different summary measures of probability distributions by using two different quadratic metrics. In this paper, our results are based on a particular approach to the origin of the variability of probability distributions. We realize that it is not standardized, but it always depends on the state of information and knowledge of the consumer.

Funder

Università degli Studi della Campania Luigi Vanvitelli

Publisher

Springer Science and Business Media LLC

Subject

General Social Sciences,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3