IRT for voting advice applications: a multi-dimensional test that is adaptive and interpretable

Author:

Sigfrid KarlORCID

Abstract

AbstractVoting advice applications rely on user input to match user preferences to political parties or candidates. Providing the input can be time-consuming, which may have a negative effect on participation. For individuals who are under time constraints or who are affected by survey fatigue, the participation threshold may be lowered if there is an option to conclude the test without answering all question items. The test result should ideally be close to the result that the participant would have gotten after answering the full battery of questions. We propose a method that allows respondents to conclude a VAA early and still get results with sufficient accuracy.The method proposed here extends the Graded Response Model and the Maximum Information Criterion, used in Item Response Theory. The aim of the method is to allow the user to control the length of the test. Furthermore, we want a simpler interpretation of multidimensional parameter estimates than we get from traditional MIRT. To achieve this, we propose an algorithm for adaptive IRT capable of selecting from a pool of items that belong to separate unidimensional scales. Using both simulated data and response data from a voting advice application project, we evaluate the accuracy of shorter tests implemented with our adaptive method. When only a few test items are answered, our proposed method outperforms a static-order IRT test of equal length in identifying the best match. We expect that implementation of the method can increase participation and engagement in voting advice applications.

Funder

Stockholm University

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3