Publisher
Springer Science and Business Media LLC
Subject
Computer Vision and Pattern Recognition,Linguistics and Language,Human-Computer Interaction,Language and Linguistics,Software
Reference34 articles.
1. Abdulbaqi, J., Gu, Y., Chen, S., & Marsic, I. (2020). Residual recurrent neural network for speech enhancement. In ICASSP 2020—2020 IEEE international conference on acoustics, speech and signal processing (ICASSP), 2020 (pp. 6659–6663).
2. Abdulbaqi, J., Gu, Y., & Marsic, I. (2019). RHR-Net: A residual hourglass recurrent neural network for speech enhancement. ArXiv, abs/1904.07294
3. Bahadur, I., Kumar, S., & Agarwal, P. (2021). Performance measurement of a hybrid speech enhancement technique. International Journal of Speech Technology, 24, 665–677.
4. Bhat, G. S., Shankar, N., Reddy, C. K. A., & Panahi, I. M. S. (2019). A real-time convolutional neural network based speech enhancement for hearing impaired listeners using smartphone. IEEE Access, 7, 78421–78433.
5. Borgstrom, B. J., & Brandstein, M. S. (2020). The speech enhancement via attention masking network (SEAMNET): An end-to-end system for joint suppression of noise and reverberation. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 29, 515–526.