1. Anagnostopoulos, C.-N.,·Iliou, T., & Giannoukos, I. (2015). Features and classifiers for emotion recognition from speech: A survey from 2000 to 2011. Artificial Intelligence Review, 43, 155–177.
2. Babu, M., Arun Kumar, M. N., & Santhosh, S. M. (2014). Extracting MFCC AND GTCC features for emotion recognition from audio speech signals. International Journal of Research in Computer Applications and Robotics, 2(8), 46–63.
3. Burkhardt, F., Paeschke, A., Rolfes, M., Sendlmeier, W., & Weiss, B. (2005). A database of german emotional speech (EMO-DB). Proceedings Interspeech. Lissabon, Portugal.
http://emodb.bilderbar.info/start.html
.
4. Garg, E., & Bahl, M. (2014). Emotion recognition in speech using gammatone cepstral coefficients. International Journal of Application or Innovation in Engineering & Management (IJAIEM), 3(10), 285–291.
5. Kaur, I., Kumar, R., Kaur, P. (2017). Speech emotion detection based on optimistic—DNN (Deep Neural Network) approach. International Journal of Emerging Trends & Technology in Computer Science (IJETTCS), 6(4), 150–156.