Author:
Ben-Basat Ran,Even Guy,Kawarabayashi Ken-ichi,Schwartzman Gregory
Abstract
AbstractWe present a time-optimal deterministic distributed algorithm for approximating a minimum weight vertex cover in hypergraphs of rank f. This problem is equivalent to the Minimum Weight Set Cover problem in which the frequency of every element is bounded by f. The approximation factor of our algorithm is $$(f+\varepsilon )$$
(
f
+
ε
)
. Let $$\varDelta $$
Δ
denote the maximum degree in the hypergraph. Our algorithm runs in the congest model and requires $$O(\log {\varDelta } / \log \log \varDelta )$$
O
(
log
Δ
/
log
log
Δ
)
rounds, for constants $$\varepsilon \in (0,1]$$
ε
∈
(
0
,
1
]
and $$f\in {\mathbb {N}}^+$$
f
∈
N
+
. This is the first distributed algorithm for this problem whose running time does not depend on the vertex weights nor the number of vertices. Thus adding another member to the exclusive family of provably optimal distributed algorithms. For constant values of f and $$\varepsilon $$
ε
, our algorithm improves over the $$(f+\varepsilon )$$
(
f
+
ε
)
-approximation algorithm of Kuhn et al. (SODA, 2006)whose running time is $$O(\log \varDelta + \log W)$$
O
(
log
Δ
+
log
W
)
, where W is the ratio between the largest and smallest vertex weights in the graph. Our algorithm also achieves an f-approximation for the problem in $$O(f\log n)$$
O
(
f
log
n
)
rounds, improving over the classical result of Khuller et al. (J Algorithms, 1994) that achieves a running time of $$O(f\log ^2 n)$$
O
(
f
log
2
n
)
. Finally, for weighted vertex cover ($$f=2$$
f
=
2
) our algorithm achieves a deterministic running time of $$O(\log n)$$
O
(
log
n
)
, matching the randomized previously best result of Koufogiannakis and Young (Distrib Comput, 2011). We also show that integer covering-programs can be reduced to the Minimum Weight Set Cover problem in the distributed setting. This allows us to achieve an $$(f\lceil \log _2(M)+1 \rceil +\varepsilon )$$
(
f
⌈
log
2
(
M
)
+
1
⌉
+
ε
)
-approximate integral solution in $$\begin{aligned} O\left( (1+f/\log n)\cdot \left( {\frac{\log \varDelta }{ \log \log \varDelta } + ({f\cdot \log M})^{1.01}\cdot \log \varepsilon ^{-1}\cdot (\log \varDelta )^{0.01}}\right) \right) \end{aligned}$$
O
(
1
+
f
/
log
n
)
·
log
Δ
log
log
Δ
+
(
f
·
log
M
)
1.01
·
log
ε
-
1
·
(
log
Δ
)
0.01
rounds, where f bounds the number of variables in a constraint, $$\varDelta $$
Δ
bounds the number of constraints a variable appears in, and $$M=\max \left\{ 1, \lceil 1/a_{\min } \rceil \right\} $$
M
=
max
1
,
⌈
1
/
a
min
⌉
, where $$a_{\min }$$
a
min
is the smallest normalized constraint coefficient.
Publisher
Springer Science and Business Media LLC
Subject
Computational Theory and Mathematics,Computer Networks and Communications,Hardware and Architecture,Theoretical Computer Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献