Enhanced Dissipation for Two-Dimensional Hamiltonian Flows

Author:

Bruè EliaORCID,Coti Zelati Michele,Marconi Elio

Abstract

AbstractLet $$H\in C^1\cap W^{2,p}$$ H C 1 W 2 , p be an autonomous, non-constant Hamiltonian on a compact 2-dimensional manifold, generating an incompressible velocity field $$b=\nabla ^\perp H$$ b = H . We give sharp upper bounds on the enhanced dissipation rate of b in terms of the properties of the period T(h) of the closed orbit $$\{H=h\}$$ { H = h } . Specifically, if $$0<\nu \ll 1$$ 0 < ν 1 is the diffusion coefficient, the enhanced dissipation rate can be at most $$O(\nu ^{1/3})$$ O ( ν 1 / 3 ) in general, the bound improves when H has isolated, non-degenerate elliptic points. Our result provides the better bound $$O(\nu ^{1/2})$$ O ( ν 1 / 2 ) for the standard cellular flow given by $$H_{\textsf{c}}(x)=\sin x_1 \sin x_2$$ H c ( x ) = sin x 1 sin x 2 , for which we can also prove a new upper bound on its mixing rate and a lower bound on its enhanced dissipation rate. The proofs are based on the use of action-angle coordinates and on the existence of a good invariant domain for the regular Lagrangian flow generated by b.

Funder

Università Commerciale Luigi Bocconi

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3