The effects of the chemical environment of menaquinones in lipid monolayers on mercury electrodes on the thermodynamics and kinetics of their electrochemistry

Author:

Dharmaraj KaruppasamyORCID,Dattler DirkORCID,Kahlert HeikeORCID,Lendeckel UweORCID,Nagel FelixORCID,Delcea MihaelaORCID,Scholz FritzORCID

Abstract

AbstractThe effects of the chemical environment of menaquinones (all-trans MK-4 and all-trans MK-7) incorporated in lipid monolayers on mercury electrodes have been studied with respect to the thermodynamics and kinetics of their electrochemistry. The chemical environment relates to the composition of lipid films as well as the adjacent aqueous phase. It could be shown that the addition of all-trans MK-4 to TMCL does not change the phase transition temperatures of TMCL. In case of DMPC monolayers, the presence of cholesterol has no effect on the thermodynamics (formal redox potentials) of all-trans MK-7, but the kinetics are affected. Addition of an inert electrolyte (sodium perchlorate; change of ionic strength) to the aqueous phase shifts the redox potentials of all-trans MK-7 only slightly. The formal redox potentials of all-trans MK-4 were determined in TMCL and nCL monolayers and found to be higher in nCL monolayers than in TMCL monolayers. The apparent electron transfer rate constants, transfer coefficients and activation energies of all-trans MK-4 in cardiolipins have been also determined. Most surprisingly, the apparent electron transfer rate constants of all-trans MK-4 exhibit an opposite pH dependence for TMCL and nCL films: the rate constants increase in TMCL films with increasing pH, but in nCL films they increase with decreasing pH. This study is a contribution to understand environmental effects on the redox properties of membrane bond redox systems. Graphical abstract

Funder

Deutsche Forschungsgemeinschaft

Universität Greifswald

Publisher

Springer Science and Business Media LLC

Subject

General Medicine,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3