Analysis of nonideality: insights from high concentration simulations of sedimentation velocity data

Author:

Correia J. J.ORCID,Wright R. T.,Sherwood P. J.,Stafford W. F.

Abstract

AbstractThe Aviv fluorescence detection system (Aviv-FDS) has allowed the performance of sedimentation velocity experiments on therapeutic antibodies in highly concentrated environments like formulation buffers and serum. Methods were implemented in the software package SEDANAL for the analysis of nonideal, weakly associating AUC data acquired on therapeutic antibodies and proteins (Wright et al. Eur Biophys J 47:709–722, 2018, Anal Biochem 550:72–83, 2018). This involved fitting both hydrodynamic, ks, and thermodynamic, BM1, nonideality where concentration dependence is expressed as s = so/(1 + ksc) and D = Do(1 + 2BM1c)/(1 + ksc) and so and Do are values extrapolated to c = 0 (mg/ml). To gain insight into the consequences of these phenomenological parameters, we performed simulations with SEDANAL of a monoclonal antibody as a function of ks (0–100 ml/g) and BM1 (0–100 ml/g). This provides a visual understanding of the separate and joint impact of ks and BM1 on the shape of high-concentration sedimentation velocity boundaries and the challenge of their unique determination by finite element methods. In addition, mAbs undergo weak self- and hetero-association (Yang et al. Prot Sci 27:1334–1348, 2018) and thus we have simulated examples of nonideal weak association over a wide range of concentrations (1–120 mg/ml). Here we demonstrate these data are best analyzed by direct boundary global fitting to models that account for ks, BM1 and weak association. Because a typical clinical dose of mAb is 50–200 mg/ml, these results have relevance for biophysical understanding of concentrated therapeutic proteins.

Publisher

Springer Science and Business Media LLC

Subject

General Medicine,Biophysics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3