Rates of convergence for regression with the graph poly-Laplacian

Author:

Trillos Nicolás García,Murray Ryan,Thorpe Matthew

Abstract

AbstractIn the (special) smoothing spline problem one considers a variational problem with a quadratic data fidelity penalty and Laplacian regularization. Higher order regularity can be obtained via replacing the Laplacian regulariser with a poly-Laplacian regulariser. The methodology is readily adapted to graphs and here we consider graph poly-Laplacian regularization in a fully supervised, non-parametric, noise corrupted, regression problem. In particular, given a dataset $$\{x_i\}_{i=1}^n$$ { x i } i = 1 n and a set of noisy labels $$\{y_i\}_{i=1}^n\subset \mathbb {R}$$ { y i } i = 1 n R we let $$u_n{:}\{x_i\}_{i=1}^n\rightarrow \mathbb {R}$$ u n : { x i } i = 1 n R be the minimizer of an energy which consists of a data fidelity term and an appropriately scaled graph poly-Laplacian term. When $$y_i = g(x_i)+\xi _i$$ y i = g ( x i ) + ξ i , for iid noise $$\xi _i$$ ξ i , and using the geometric random graph, we identify (with high probability) the rate of convergence of $$u_n$$ u n to g in the large data limit $$n\rightarrow \infty $$ n . Furthermore, our rate is close to the known rate of convergence in the usual smoothing spline model.

Funder

National Science Foundation

H2020 European Research Council

Simons Foundation

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Radiology, Nuclear Medicine and imaging,Signal Processing,Algebra and Number Theory,Analysis

Reference78 articles.

1. Schoenberg, I.: Spline functions and the problem of graduation. Proc. Natl. Acad. Sci. U.S.A. 52(4), 947–950 (1964)

2. Schoenberg, I.: On interpolation by spline functions and its minimum properties. Int. Ser. Numer. Anal. 5, 109–129 (1964)

3. Wahba, G.: Spline Models for Observational Data, vol. 59. SIAM, Philadelphia (1990)

4. Zhu, X., Ghahramani, Z., Lafferty, J.D.: Semi-supervised learning using Gaussian fields and harmonic functions. In: Proceedings of the 20th International Conference on Machine Learning, pp. 912–919 (2003)

5. Nadler, B., Srebro, N., Zhou, X.: Statistical consistency of semi-supervised learning: The limit of infinite unlabelled data. In: Advances in Neural Information Processing Systems, pp. 1330–1338 (2009)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3