1. Ajanthan, T., Dokania, P.K., Hartley, R.I., Torr, P.H.S.: Proximal mean-field for neural network quantization, CoRR. arXiv:1812.04353 (2018)
2. Bai, Y., Wang, Y.-X., Liberty, E.: ProxQuant: quantized neural networks via proximal operators, CoRR. arXiv:1810.00861 (2018)
3. Balan, R., Singh, M., Zou, D.: Lipschitz properties for deep convolutional neural networks. In: Frames and Harmonic Analysis, pp. 129–151, Contemporary Mathematics, vol. 706. American Mathematical Society, Providence (2018)
4. Courbariaux, M., Bengio, Y., David, J.-P.: BinaryConnect: training deep neural networks with binary weights during propagations. In: Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., pp. 3123–3131 (2015)
5. Cybenko, G.: Approximation by superpositions of a sigmoidal function. Math. Control Signals Syst. 2, 303–314 (1989)