Effects of microplastics on soil carbon pool and terrestrial plant performance

Author:

Chen Yalan,Li Yang,Liang Xinru,Lu Siyuan,Ren Jiaqi,Zhang Yuqin,Han Zichen,Gao Bo,Sun KeORCID

Abstract

AbstractSoil, as a primary repository of plastic debris, faces an escalating influx of microplastics. Microplastics have the potential to decrease soil bulk density and pH, as well as alter soil pore structure and aggregation. These changes in soil physicochemical properties subsequently lead to habitat degradation for microbes and environmental shifts that impact plant growth. Masquerading as soil carbon storage, microplastics can distort assessments of the soil carbon pool by introducing plastic-carbon and associated leachates, influencing soil organic matter (SOM) turnover through priming effects (e.g., dilution, substrate switching, and co-metabolisms). Additionally, microplastics can influence the distribution of soil carbon in particulate and mineral-associated organic matter, consequently affecting the accumulation and stability of soil carbon. Furthermore, microplastics can also influence the chemodiversity of dissolved organic matter (DOM) in soils by increasing DOM aromaticity and molecular weight while deepening its humification degree. The changes observed in soil DOM may be attributed to inputs from microplastic-derived DOM along with organo-organic and organo-mineral interactions coupled with microbial degradation processes. Acting as an inert source of carbon, microplastics create a distinct ecological niche for microbial growth and contribute to necromass formation pathways. Conventional microplastics can reduce microbial necromass carbon contribution to the stable pool of soil carbon, whereas bio-microplastics tend to increase it. Furthermore, microplastics exert a wide range of effects on plant performance through both internal and external factors, influencing seed germination, vegetative and reproductive growth, as well as inducing ecotoxicity and genotoxicity. These impacts may arise from alterations in the growth environment or the uptake of microplastics by plants. Future research should aim to elucidate the impact of microplastics on microbial necromass accumulation and carbon storage within mineral-associated fractions, while also paying closer attention to rhizosphere dynamics such as the microbial stabilization and mineral protection for rhizodeposits within soils. Graphical Abstract

Funder

National Science Fund for Distinguished Young Scholars

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3