Air oxidation in surface engineering of biochar-based materials: a critical review

Author:

Sun Zhuozhuo,Dai Lichun,Lai Penghui,Shen Feng,Shen Fei,Zhu Wenkun

Abstract

AbstractBiochar always suffers from low porosity and/or poor surface functionality, which limit its performances. Among various surface engineering strategies, air oxidation favors both pore development and surface oxygenation for biochar. However, there is still a lack of systematic knowledge and critical perspective on air oxidation in surface engineering of biochar-based materials for various applications. Herein, this review analyzed the mechanisms of air oxidation, summarized the routes of air oxidation in surface engineering of biochar-based materials, investigated the impacts of controlling factors (including operation parameters and intrinsic biochar structure) on pore development and surface oxygenation during air oxidation, and discussed the performances of the resultant materials in pollution control, biomass catalytic conversion and energy storage. This review suggested that air oxidation could be conducted in oxidative torrefaction/pyrolysis, and applied as post-modification or pretreatment processes. Interestingly, air oxidation is efficient in enriching the heteroatoms in the heteroatom-doped biochar, and promoting the doping of metal species on biochar by enriching the anchor sites. This review also highlighted the future challenges concerning air oxidation in the surface engineering of biochar-based materials. Finally, this review was intended to attract broad attention and inspire new discoveries for promoting the application of air oxidation in surface engineering of biochar-based materials for various advanced applications. Graphical Abstract

Funder

the Science and Technology Project of Sichuan Province

he Central Public-Interest Scientific Institution Basal Research Fund for Chinese Academy of Agricultural Sciences

the Science and Technology Innovation Project of Chinese Academy of Agricultural Sciences

the Joint Innovation Project of China National Uranium Co. Ltd and State Key Laboratory of Nuclear Resources and Environment

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3