1. Aflalo, T., Kellis, S., Klaes, C., Lee, B., Shi, Y., Pejsa, K., et al., “Decoding motor imagery from the posterior parietal cortex of a tetraplegic human,” Science, 348, No. 6237, 906–910 (2015).
2. Aguilar, J. M., Castillo, J., and Elias, D., “EEG signals processing based on fractal dimension features and classified by neural network and support vector machine in motor imagery for a BCI,” in: VI Latin American Congress on Biomedical Engineering CLAIB2014, Parant, Argentina, October 2014, (2014), pp. 615–618.
3. Ahn, S., Ahn, M., Cho, H., and Jun, S. C. “Achieving a hybrid brain–computer interface with tactile selective attention and motor imagery,” J. Neural Eng., 11, No. 6 066004 (2014).
4. Aliakbaryhosseinabadi, S., Kostic, V., Pavlovic, A., Radovanovic, S., Farina, D., and Mrachacz-Kersting, N., “Effect of attention variation in stroke patients: analysis of single trial movement-related cortical potentials,” in: Converging Clinical and Engineering Research on Neurorehabilitation II, Springer Intern. Publishing (2017), pp. 983–987.
5. Aslanyan, E. V., Kiroy, V. N., Lazurenko, D. M., and Bakhtin, O. M., “The properties of neural processes and the effectiveness of biofeedback training,” Psikhol. Zh., 34 No. 2, 8–116 (2013).