Abstract
AbstractIn this paper, we formulate a criterion for relative compactness in the space of regulated functions on an unbounded interval and not necessarily bounded. Next we construct measure of noncompactness in this space and investigate its properties. The presented measure is simpler and more convenient to use than all known so far in space of regulated functions on an unbounded interval. Moreover, we show the applicability of the measure of noncompactness in proving the existence of solutions of some Volterra type integral equation.
Publisher
Springer Science and Business Media LLC
Subject
Control and Optimization,Analysis,Algebra and Number Theory
Reference15 articles.
1. Banaś, J., Goebel, K.: Measure of Noncompactness in Banach Spaces. Lecture Notes in Pure and Applied Math, vol. 60. Marcel Dekker, New York (1980)
2. Banaś, J., Zając, T.: On a measure of noncompactness in the space of regulated functions and its applications. Adv. Nonlinear Anal. (2019). https://doi.org/10.1515/anona-2018-0024
3. Bothe, D.: Multivalued perturbation of m-accretive differential inclusions. Isr. J. Math. 108, 109–138 (1998)
4. Cichoń, K., Cichoń, M., Metwali, M.A.: On some parameters in the space of regulated functions and their applications. Carpath. J. Math. 34(1), 17–30 (2018)
5. Cichoń, K., Cichoń, M., Satco, B.: On regulated functions. Fasc. Math. (2018). https://doi.org/10.1515/fasmath-2018-0003
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献