Application of microalgal-ZnO-NPs for reusing polyester/cotton blended fabric wastes after modification by cellulases enzymes

Author:

Darwesh Osama M.ORCID,Al-Balakocy Naser G.,Ghanem Ahmed,Matter Ibrahim A.

Abstract

AbstractPolyester/cotton (PET/C) blended fabric wastes are produced daily in huge amounts, which constitutes an economic loss and an environmental threat if it is not reused appropriately. Modern textile waste recycling technologies put much effort into developing fabric materials with unique properties, such as bioactivity or new optical goods based on modern technologies, especially nano-biotechnology. In this study, zinc oxide nanoparticles (ZnO-NPs) were biosynthesized using the aqueous extract of Dunaliella sp. and immobilized on PET/C waste fabrics after enzymatically activated with cellulases. The produced Dunaliella-ZnO-NPs (10–20 nm with a spherical shape) were characterized by High-resolution transmission electron microscopy (HRTEM), Fourier-transform infrared spectroscopy (FTIR), X-Ray diffraction analysis (XRD), and Scanning electron microscopy-energy dispersive X-ray analyzer (SEM-EDAX), and some functional groups, such as CH, CO, NH, and CN (due to the presence of carboxyl, proteins and hydroxyl groups), were detected, revealing the biosynthesis of ZnO-NPs. The analysis showed that the resulting ZnO-NPS had potent antimicrobial effects, Ultraviolet (UV) protection capabilities, and no cytotoxic effects on the normal human fibroblast cell line (BJ1). On the other hand, enzymatic treatments of PET/C fabric waste with cellulases enhanced the immobilization of biosynthetic nanoparticles on their surface. Modified PET/C fabrics loaded with Dunaliella-ZnO-NPs showed antibacterial and UV protection capabilities making them an eco-friendly and cost-effective candidate for numerous applications. These applications can include the manufacture of active packaging devices, wastewater treatment units, and many other environmental applications. Graphical abstract

Publisher

Springer Science and Business Media LLC

Subject

Pollution,Waste Management and Disposal,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3