Wave-induced Lagrangian drift in a porous seabed

Author:

Weber Jan Erik H.,Ghaffari Peygham

Abstract

AbstractThe mean drift in a porous seabed caused by long surface waves in the overlying fluid is investigated theoretically. We use a Lagrangian formulation for the fluid and the porous bed. For the wave field we assume inviscid flow, and in the seabed, we apply Darcy’s law. Throughout the analysis, we assume that the long-wave approximation is valid. Since the pressure gradient is nonlinear in the Lagrangian formulation, the balance of forces in the porous bed now contains nonlinear terms that yield the mean horizontal Stokes drift. In addition, if the waves are spatially damped due to interaction with the underlying bed, there must be a nonlinear balance in the fluid layer between the mean surface gradient and the gradient of the radiation stress. This causes, through continuity of pressure, an additional force in the porous layer. The corresponding drift is larger than the Stokes drift if the depth of the porous bed is more than twice that of the fluid layer. The interaction between the fluid layer and the seabed can also cause the waves to become temporally attenuated. Again, through nonlinearity, this leads to a horizontal Stokes drift in the porous layer, but now damped in time. In the long-wave approximation only the horizontal component of the permeability in the porous medium appears, so our analysis is valid for a medium that has different permeabilities in the horizontal and vertical directions. It is suggested that the drift results may have an application to the transport of microplastics in the porous oceanic seabed.

Funder

Norges Forskningsråd

University of Oslo

Publisher

Springer Science and Business Media LLC

Subject

Water Science and Technology,Environmental Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3