Time-dependent scour processes on granular beds at large scale

Author:

Palermo MicheleORCID,Bombardelli Fabián A.ORCID,Pagliara StefanoORCID,Kuroiwa JulioORCID

Abstract

AbstractA theoretical framework, based on the phenomenological theory of turbulence applied to scour-related processes due to plunging jets on cohesionless beds, is considered in this paper. More specifically, its predictive capability is assessed herein for large-scale domains, after it was developed for small scales elsewhere. The analysis focuses on both the time-evolution process and the equilibrium configuration for a wide range of hydraulic structures. After revisiting the theory for the temporal evolution of the scour processes, the scour for large-scale tests is investigated using unpublished experiments performed at Colorado State University by the last author. These tests confirm the existence of two stages in the scour hole development, namely the developing and developed phases. Thus, the scour dynamics at large scales is shown to be consistent with that at smaller scales. Then, the theory recently introduced by the first three authors is used to predict the time evolution of scour, corroborating that the very same equations, together with the same coefficients, provide successful predictions, regardless of scale and granulometric distribution. Finally, the theory is again verified against laboratory data on PK weirs obtained at the University of Pisa. Overall, the work described in the paper offers a tool with general validity.

Funder

Università di Pisa

Publisher

Springer Science and Business Media LLC

Subject

Water Science and Technology,Environmental Chemistry

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3