Systematic stability analysis, evaluation and testing process, and platform for grid-connected power electronic equipment

Author:

Zhang ZiqianORCID,Schürhuber Robert,Fickert Lothar,Friedl Katrin,Chen Guochu,Zhang Yongming

Abstract

AbstractThe proportion of grid-connected power electronic equipment is already large enough to influence the dynamic characteristics of the modern power system. Ensuring the stability of grid-connected power electronic equipment in all relevant situations is one of the foundations for reliable power system operation. In contrast to conventional rotating machines, the stability of power electronic devices mostly depends on the applied control strategy, and a large diversity of different complex control strategies are in practical use. Also, the investigation of stability of such systems needs to take into account the non-linear behaviour of the power electronic equipment. These are the main reasons why the system behavior of grid-connected power electronic equipment cannot be reproduced satisfactorily when aplying a single method of stability analysis, evaluation and testing method. During the last years, faults which led to tripping of converters due to stability problems occurred frequently even though standardized fault compliance tests were performed on these converters. In this paper these stability issues are analyzed. Also, a three-dimensional stability analysis method is suggested in order to comprehensively cover system behavior. The three dimensions are the time/scale dimension, the equipment number dimension and the local or global range of the stability analysis dimension. Based on this three-dimensional framework, this paper proposes a stability evaluation as well as a test process applying a hardware-in-the-loop test concept. Through the verification and testing of the stability of the actual grid-connected power electronic equipment, the method proposed in this paper is verified for up-to-date equipment.

Funder

Graz University of Technology

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Utilization of Computer Vision and Deep Learning in Fault Identification and Repair of Mechanical and Electronic Equipment;Lecture Notes on Data Engineering and Communications Technologies;2024

2. Development of a Platform for Automated Tests of Photovoltaic Inverters;2023 IEEE 8th Southern Power Electronics Conference and 17th Brazilian Power Electronics Conference (SPEC/COBEP);2023-11-26

3. Aspects of grid-connected converters and their inherent influence on the power grid;2023 23rd International Scientific Conference on Electric Power Engineering (EPE);2023-05-24

4. Real-time Simulation of Power System for Power Electronic Equipment based on Intelligent Optimization Algorithm;2023 IEEE International Conference on Integrated Circuits and Communication Systems (ICICACS);2023-02-24

5. Study of the dynamic performance boundaries of a converter’s energy storage device;e & i Elektrotechnik und Informationstechnik;2022-10-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3