A hybrid Wavelet-CNN-LSTM deep learning model for short-term urban water demand forecasting
Author:
Publisher
Springer Science and Business Media LLC
Subject
General Environmental Science
Link
https://link.springer.com/content/pdf/10.1007/s11783-023-1622-3.pdf
Reference49 articles.
1. Adamowski J F (2008). Peak daily water demand forecast modeling using artificial neural networks. Journal of Water Resources Planning and Management, 134(2): 119–128
2. Amari S I, Wu S (1999). Improving support vector machine classifiers by modifying kernel functions. Neural networks: the official journal of the International Neural Network Society or Neural Netw, 12(6): 783–789
3. Bedi J, Toshniwal D (2019). Deep learning framework to forecast electricity demand. Applied Energy, 238: 1312–1326
4. Billings R B, Jones C V (2011). Forecasting Urban Water Demand. Washington, DC: America Water Works Association
5. Boggess A, Narcowich F J (2015). A first course in wavelets with Fourier analysis. 2nd ed. John Wiley & Sons, 183–217
Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A combined model using secondary decomposition for crude oil futures price and volatility forecasting: Analysis based on comparison and ablation experiments;Expert Systems with Applications;2024-10
2. An interpretable machine learning-based pitting corrosion depth prediction model for steel drinking water pipelines;Process Safety and Environmental Protection;2024-10
3. Reliable multi-horizon water demand forecasting model: A temporal deep learning approach;Sustainable Cities and Society;2024-10
4. Enhancing Water Demand Forecasting: Leveraging LSTM Networks for Accurate Predictions;The 3rd International Joint Conference on Water Distribution Systems Analysis & Computing and Control for the Water Industry (WDSA/CCWI 2024);2024-09-12
5. Industrial water withdrawal prediction using multi-head attention encoder model;AQUA — Water Infrastructure, Ecosystems and Society;2024-09-03
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3