1. R. Cools,Constructing cubature formulae: the science behind the art, Acta Numerica6, Cambridge University Press (1997), 1–54.
2. R. Cools,Monomial cubature rules since “troud”: a compilation — part 2, J. Comput. Appl. Math.112, 1–2 (1999), 21–27.
3. R. Cools and A. Haegemans,Construction of fully symmetric cubature formulae of degree Ak — for fully symmetric planar regions, Report TW 71, Dept. of Computer Science, K.U.Leuven, 1985.
4. R. Cools and A. Haegemans,Automatic computation of knots and weights of cubature formulae for circular symmetric planar regions, Report TW 77, Dept. of Computer Science, K.U.Leuven, 1986.
5. R. Cools and A. Haegemans,Tables of degree 2k — l/2k + 1 pairs of cubature formulae for symmetric planar regions, obtained by optimal addition of knots, Report TW 76, Dept. of Computer Science, K.U.Leuven, 1986.