Generalized Forbidden Subposet Problems

Author:

Gerbner Dániel,Keszegh Balázs,Patkós BalázsORCID

Abstract

AbstractA subfamily $\{F_{1},F_{2},\dots ,F_{|P|}\}\subseteq \mathcal {F}$ { F 1 , F 2 , , F | P | } F of sets is a copy of a poset P in $\mathcal {F}$ F if there exists a bijection $\phi :P\rightarrow \{F_{1},F_{2},\dots ,F_{|P|}\}$ ϕ : P { F 1 , F 2 , , F | P | } such that whenever $x \le _{P} x^{\prime }$ x P x holds, then so does $\phi (x)\subseteq \phi (x^{\prime })$ ϕ ( x ) ϕ ( x ) . For a family $\mathcal {F}$ F of sets, let $c(P,\mathcal {F})$ c ( P , F ) denote the number of copies of P in $\mathcal {F}$ F , and we say that $\mathcal {F}$ F is P-free if $c(P,\mathcal {F})=0$ c ( P , F ) = 0 holds. For any two posets P, Q let us denote by La(n, P, Q) the maximum number of copies of Q over all P-free families $\mathcal {F} \subseteq 2^{[n]}$ F 2 [ n ] , i.e. $\max \limits \{c(Q,\mathcal {F}): \mathcal {F} \subseteq 2^{[n]}, c(P,\mathcal {F})=0 \}$ max { c ( Q , F ) : F 2 [ n ] , c ( P , F ) = 0 } . This generalizes the well-studied parameter La(n, P) = La(n, P, P1) where P1 is the one element poset, i.e. La(n, P) is the largest possible size of a P-free family. The quantity La(n, P) has been determined (precisely or asymptotically) for many posets P, and in all known cases an asymptotically best construction can be obtained by taking as many middle levels as possible without creating a copy of P. In this paper we consider the first instances of the problem of determining La(n, P, Q). We find its value when P and Q are small posets, like chains, forks, the N poset and diamonds. Already these special cases show that the extremal families are completely different from those in the original P-free cases: sometimes not middle or consecutive levels maximize La(n, P, Q) and sometimes the extremal family is not the union of levels. Finally, we determine (up to a polynomial factor) the maximum number of copies of complete multi-level posets in k-Sperner families. The main tools for this are the profile polytope method and two extremal set system problems that are of independent interest: we maximize the number of r-tuples $A_{1},A_{2},\dots , A_{r} \in \mathcal {A}$ A 1 , A 2 , , A r A over all antichains $\mathcal {A}\subseteq 2^{[n]}$ A 2 [ n ] such that (i) $\cap _{i=1}^{r}A_{i}=\emptyset $ i = 1 r A i = , (ii) $\cap _{i=1}^{r}A_{i}=\emptyset $ i = 1 r A i = and $\cup _{i=1}^{r}A_{i}=[n]$ i = 1 r A i = [ n ] .

Funder

the János Bolyai Research Fellowship of the Hungarian Academy of Sciences

National Research, Development and Innovation Office

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,Geometry and Topology,Algebra and Number Theory

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Profile Polytope of Nontrivial Intersecting Families;SIAM Journal on Discrete Mathematics;2023-10-11

2. The covering lemma and q-analogues of extremal set theory problems;Ars Mathematica Contemporanea;2023-08-22

3. Chain-dependent Conditions in Extremal Set Theory;Order;2023-08-07

4. On Generalized Turán Results in Height Two Posets;SIAM Journal on Discrete Mathematics;2022-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3