On Nontrivial Weak Dicomplementations and the Lattice Congruences that Preserve Them

Author:

Kwuida LeonardORCID,Mureşan Claudia

Abstract

AbstractWe study the existence of nontrivial and of representable (dual) weak complementations, along with the lattice congruences that preserve them, in different constructions of bounded lattices, then use this study to determine the finite (dual) weakly complemented lattices with the largest numbers of congruences, along with the structures of their congruence lattices. It turns out that, if $$n\ge 7$$ n 7 is a natural number, then the four largest numbers of congruences of the n–element (dual) weakly complemented lattices are: $$2^{n-2}+1$$ 2 n - 2 + 1 , $$2^{n-3}+1$$ 2 n - 3 + 1 , $$5\cdot 2^{n-6}+1$$ 5 · 2 n - 6 + 1 and $$2^{n-4}+1$$ 2 n - 4 + 1 , which yields the fact that, for any $$n\ge 5$$ n 5 , the largest and second largest numbers of congruences of the n–element weakly dicomplemented lattices are $$2^{n-3}+1$$ 2 n - 3 + 1 and $$2^{n-4}+1$$ 2 n - 4 + 1 . For smaller numbers of elements, several intermediate numbers of congruences appear between the elements of these sequences.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Bern University of Applied Sciences

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,Geometry and Topology,Algebra and Number Theory

Reference24 articles.

1. Bishop, A.A.: Completions of Lattices with Semicomplementation.  Dissertation, Western Michigan University (1972)

2. Czédli, G., Mureşan, C.: On Principal Congruences and the Number of Congruences of a Lattice with More Ideals than Filters. Acta Universitatis Szegediensis, Acta Scientiarum Mathematicarum (2019)

3. Czédli, G.: A Note on Finite Lattices with Many Congruences, Acta Universitatis Matthiae Belii. Series Mathematics Online , 22–28 (2018)

4. Czédli, G.: Finite Semilattices with Many Congruences. Order 36(2), 233–247 (2019)

5. Freese, R.: Computing Congruence Lattices of Finite Lattices. Proc. Amer. Math. Soc. 125, 3457–3463 (1997)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3