Abstract
AbstractA poset $$(P^{\prime },\le _{P^{\prime }})$$
(
P
′
,
≤
P
′
)
contains a copy of some other poset $$(P,\le _{P})$$
(
P
,
≤
P
)
if there is an injection $$f:P'\rightarrow P$$
f
:
P
′
→
P
where for every $$X,Y\in P$$
X
,
Y
∈
P
, $$X\le _{P} Y$$
X
≤
P
Y
if and only if $$f(X)\le _{P'} f(Y)$$
f
(
X
)
≤
P
′
f
(
Y
)
. For any posets P and Q, the poset Ramsey number R(P, Q) is the smallest integer N such that any blue/red coloring of a Boolean lattice of dimension N contains either a copy of P with all elements blue or a copy of Q with all elements red. A complete $$\ell $$
ℓ
-partite poset $$K_{t_{1},\dots ,t_{\ell }}$$
K
t
1
,
⋯
,
t
ℓ
is a poset on $$\sum _{i=1}^{\ell } t_{i}$$
∑
i
=
1
ℓ
t
i
elements, which are partitioned into $$\ell $$
ℓ
pairwise disjoint sets $$A^{i}$$
A
i
with $$|A^{i}|=t_{i}$$
|
A
i
|
=
t
i
, $$1\le i\le \ell $$
1
≤
i
≤
ℓ
, such that for any two $$X\in A^{i}$$
X
∈
A
i
and $$Y\in A^{j}$$
Y
∈
A
j
, $$X<Y$$
X
<
Y
if and only if $$i<j$$
i
<
j
. In this paper we show that $$R(K_{t_{1},\dots ,t_{\ell }},Q_{n})\le n+\frac{(2+o_{n}(1))\ell n}{\log n}$$
R
(
K
t
1
,
⋯
,
t
ℓ
,
Q
n
)
≤
n
+
(
2
+
o
n
(
1
)
)
ℓ
n
log
n
.
Funder
Deutsche Forschungsgemeinschaft
Publisher
Springer Science and Business Media LLC
Subject
Computational Theory and Mathematics,Geometry and Topology,Algebra and Number Theory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献