Decision-making under uncertainty: beyond probabilities

Author:

Badings Thom,Simão Thiago D.,Suilen Marnix,Jansen Nils

Abstract

AbstractThis position paper reflects on the state-of-the-art in decision-making under uncertainty. A classical assumption is that probabilities can sufficiently capture all uncertainty in a system. In this paper, the focus is on the uncertainty that goes beyond this classical interpretation, particularly by employing a clear distinction between aleatoric and epistemic uncertainty. The paper features an overview of Markov decision processes (MDPs) and extensions to account for partial observability and adversarial behavior. These models sufficiently capture aleatoric uncertainty, but fail to account for epistemic uncertainty robustly. Consequently, we present a thorough overview of so-called uncertainty models that exhibit uncertainty in a more robust interpretation. We show several solution techniques for both discrete and continuous models, ranging from formal verification, over control-based abstractions, to reinforcement learning. As an integral part of this paper, we list and discuss several key challenges that arise when dealing with rich types of uncertainty in a model-based fashion.

Publisher

Springer Science and Business Media LLC

Subject

Information Systems,Software

Reference169 articles.

1. Proceedings of Machine Learning Research;J. Achiam,2017

2. Alegre, L.N., Bazzan, A.L.C., da Silva, B.C.: Minimum-delay adaptation in non-stationary reinforcement learning via online high-confidence change-point detection. In: AAMAS, pp. 97–105. ACM, New York (2021)

3. Alshiekh, M., Bloem, R., Ehlers, R., Könighofer, B., Niekum, S., Topcu, U.: Safe reinforcement learning via shielding. In: AAAI, pp. 2669–2678. AAAI Press, Menlo Park (2018)

4. Altman, E.: Constrained Markov Decision Processes: Stochastic Modeling. Routledge, London (1999)

5. Alur, R., Henzinger, T.A., Lafferriere, G., Pappas, G.J.: Discrete abstractions of hybrid systems. Proc. IEEE 88(7), 971–984 (2000)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Robust probabilistic temporal logics;Information Processing Letters;2025-02

2. Strong Simple Policies for POMDPs;International Journal on Software Tools for Technology Transfer;2024-06

3. Probabilistic net load forecasting framework for application in distributed integrated renewable energy systems;Energy Reports;2024-06

4. Advanced Power Converters and Learning in Diverse Robotic Innovation: A Review;Energies;2023-10-19

5. Explanation Paradigms Leveraging Analytic Intuition (ExPLAIn);International Journal on Software Tools for Technology Transfer;2023-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3