Algebraically explainable controllers: decision trees and support vector machines join forces

Author:

Jüngermann Florian,Křetínský Jan,Weininger Maximilian

Abstract

AbstractRecently, decision trees (DT) have been used as an explainable representation of controllers (a.k.a. strategies, policies, schedulers). Although they are often very efficient and produce small and understandable controllers for discrete systems, complex continuous dynamics still pose a challenge. In particular, when the relationships between variables take more complex forms, such as polynomials, they cannot be obtained using the available DT learning procedures. In contrast, support vector machines provide a more powerful representation, capable of discovering many such relationships, but not in an explainable form. Therefore, we suggest to combine the two frameworks to obtain an understandable representation over richer, domain-relevant algebraic predicates. We demonstrate and evaluate the proposed method experimentally on established benchmarks.

Funder

Technische Universität München

Publisher

Springer Science and Business Media LLC

Subject

Information Systems,Software

Reference40 articles.

1. Akmese, S.M.: Generating richer predicates for decision trees. Bachelor’s thesis, Technical University of Munich (2019)

2. Arlinghaus, S.: Practical Handbook of Curve Fitting. Taylor & Francis, London (1994)

3. Ashok, P., Brázdil, T., Chatterjee, K., Křetínský, J., Lampert, C.H., Toman, V.: Strategy representation by decision trees with linear classifiers. In: Parker, D., Wolf, V. (eds.) Quantitative Evaluation of Systems, pp. 109–128. Springer, Cham (2019)

4. Lecture Notes in Computer Science;P. Ashok,2019

5. Ashok, P., Jackermeier, M., Jagtap, P., Křetínský, J., Weininger, M., Dtcontrol, M.Z.: Decision tree learning algorithms for controller representation. In: Proceedings of the 23rd International Conference on Hybrid Systems: Computation and Control, HSCC’20. Association for Computing Machinery, New York (2020)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Label ranking oblique trees;Knowledge-Based Systems;2024-07

2. Formal XAI via Syntax-Guided Synthesis;Bridging the Gap Between AI and Reality;2023-12-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3