Efficient deep learning techniques for the detection of phishing websites
Author:
Publisher
Springer Science and Business Media LLC
Subject
Multidisciplinary
Link
https://link.springer.com/content/pdf/10.1007/s12046-020-01392-4.pdf
Reference49 articles.
1. Rao R S and Pais A R 2019 Detection of phishing websites using an efficient feature-based machine learning framework. Neural Comput. Appl. 31: 3851–3873
2. APWG 2018 Phishing attack trends reports, first quarter 2018. https://docs.apwg.org//reports/apwg_trends_report_q1_2018.pdf, published July 31, 2018
3. Fu A Y, Wenyin L and Deng X 2006 Detecting phishing web pages with visual similarity assessment based on earth mover’s distance (emd). IEEE Trans. Dependable Secure Comput. 3: 301–311
4. Wenyin L, Huang G, Xiaoyue L, Min Z and Deng X 2005 Detection of phishing webpages based on visual similarity. In: Special Interest Tracks and Posters of the 14th International Conference on World Wide Web, ACM, pp. 1060–1061
5. Hara M, Yamada A and Miyake Y 2009 Visual similarity-based phishing detection without victim site information. In: Proceedings of the IEEE Symposium on Computational Intelligence in Cyber Security, CICS’09, IEEE, pp. 30–36
Cited by 74 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. DeepEPhishNet: a deep learning framework for email phishing detection using word embedding algorithms;Sādhanā;2024-07-11
2. Enhancing Password Security With Machine Learning-Based Strength Assessment Techniques;Advances in Information Security, Privacy, and Ethics;2024-05-31
3. Phishing URL Detection Using Machine Learning and Deep Learning;2024 IEEE World AI IoT Congress (AIIoT);2024-05-29
4. A cyber defense system against phishing attacks with deep learning game theory and LSTM-CNN with African vulture optimization algorithm (AVOA);International Journal of Information Security;2024-05-05
5. Intrusion Detection with deep learning: A literature review;2024 6th International Conference on Pattern Analysis and Intelligent Systems (PAIS);2024-04-24
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3