Variability of prey preferences and uptake of anthropogenic particles by juvenile white seabream in a coastal lagoon nursery ground

Author:

Müller CarolinORCID,Erzini Karim,Dudeck Tim,Cruz Joana,Corona Luana Santos,Abrunhosa Felipe Eloy,Afonso Carlos Manuel Lourenço,Mateus Miguel Ângelo Franco,Orro Cristina,Monteiro Pedro,Ekau Werner

Abstract

AbstractMarine plastic litter, originating from land-based sources, enters the marine environment by passing through coastal ecosystems such as lagoons and estuaries. As early life history stages (ELHS) of many commercially important fish species rely on these transitional areas as nursery grounds, we hypothesized that they encounter a spatial gradient of habitat quality and pollution from inner to outer parts of their vital environment. With sizes < 5 mm, anthropogenic particles (AP), among them microplastic (MP) fibers and fragments, entail a high bioavailability for ELHS of fish, potentially facilitating AP uptake at early developmental stages which may have implications for their survival and growth. This study provides a contextualization baseline between feeding preferences and uptake of AP by the white seabream Diplodus sargus (Linnaeus, 1758) in an estuarine nursery ground on the southern coast of Portugal. Juvenile fish showed a generalized, omnivorous feeding mode with differences in trophic resource utilization between individuals collected at distinct seagrass meadows in the lagoon. A total of 23.13% of the fish (n = 147) were detected with AP in the gastrointestinal tract, and the mean number of AP per AP-feeding individual was 1.64 ± 1.04, with anthropogenic fibers (n = 47) occurring more frequently than fragments (n = 9). Knowledge of the underlying factors for MP ingestion will be greatly enhanced by considering environmental conditions along with species-stage and life-stage specific feeding modes and prey preferences which shape the uptake probability of anthropogenic fibers and fragments.

Funder

Fundação para a Ciência e a Tecnologia

Heinrich Böll Stiftung

Joint Programming Initiative Healthy and Productive Seas and Oceans

Leibniz-Zentrum für Marine Tropenforschung (ZMT) GmbH

Publisher

Springer Science and Business Media LLC

Subject

Aquatic Science,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3