Use of non-lethal endpoints to establish water quality requirements and optima of the endangered Topeka shiner (Notropis topeka)

Author:

Mott Rory T.,Rosenberger Amanda E.,Novinger Doug

Abstract

AbstractWater quality standards based on sub-lethal effects and performance optima for aquatic organisms, rather than onset of mortality, are more ecologically relevant for management of species of conservation concern. We investigated the effects of hypoxia, temperature (with acclimation), nitrogenous chemical compounds, and chloride on Topeka shiners (Notropis topeka) by monitoring behavioral responses to a reduction in oxygen and, using swimming speed, determining thermal optima and onset of effect for concentrations of nitrogenous compounds and chloride. We found ASR50 (i.e., dissolved oxygen concentrations where 50% of fish use aquatic surface respiration) to be 1.65 mg/L and ASR90 to be 1.08 mg/L of dissolved oxygen. Optimum temperatures for the species ranged from 17.7 to 28.0 °C, while predicted 100% mortality ranged from 33.7 to 40.3 °C, depending on the temperature at which fish were acclimated prior to experiments. Ammonia and sodium chloride reduced swimming speed at concentrations below known LC50 values, while nitrite concentrations did not correspond with swimming speed, but rather, post-experiment mortality. This provides insight into where Topeka shiners can not only persist, but also thrive. Although swimming speed may not be a suitable metric for determining the effects of all contaminants, our focus on optima and sub-lethal effects over tolerance allows selections of the most suitable reintroduction site matching the species’ physiological profile.

Funder

MDC

Publisher

Springer Science and Business Media LLC

Subject

Aquatic Science,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3