Failure Mechanisms of Alloys with a Bimodal Graine Size Distribution

Author:

Skripnyak Vladimir A.,Skripnyak Evgeniya G.,Skripnyak Vladimir V.

Abstract

AbstractA multi-scale computational approach was used for the investigation of a high strain rate deformation and fracture of magnesium and titanium alloys with a bimodal distribution of grain sizes under dynamic loading. The processes of inelastic deformation and damage of titanium alloys were investigated at the mesoscale level by the numerical simulation method. It was shown that localization of plastic deformation under tension at high strain rates depends on grain size distribution. The critical fracture stress of alloys depends on relative volumes of coarse grains in representative volume. Microcracks nucleation at quasi-static and dynamic loading is associated with strain localization in ultra-fine grained partial volumes. Microcracks arise in the vicinity of coarse and ultrafine grains boundaries. It is revealed that the occurrence of a bimodal grain size distributions causes increased ductility, but decreased tensile strength of UFG alloys. The increase in fine precipitation concentration results not only strengthening but also an increase in ductility of UFG alloys with bimodal grain size distribution.

Publisher

Springer International Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3