Compiling Universal Probabilistic Programming Languages with Efficient Parallel Sequential Monte Carlo Inference

Author:

Lundén DanielORCID,Öhman JoeyORCID,Kudlicka JanORCID,Senderov ViktorORCID,Ronquist FredrikORCID,Broman DavidORCID

Abstract

AbstractProbabilistic programming languages (PPLs) allow users to encode arbitrary inference problems, and PPL implementations provide general-purpose automatic inference for these problems. However, constructing inference implementations that are efficient enough is challenging for many real-world problems. Often, this is due to PPLs not fully exploiting available parallelization and optimization opportunities. For example, handling probabilisticcheckpointsin PPLs through continuation-passing style transformations or non-preemptive multitasking—as is done in many popular PPLs—often disallows compilation to low-level languages required for high-performance platforms such as GPUs. To solve the checkpoint problem, we introduce the concept ofPPL control-flow graphs(PCFGs)—a simple and efficient approach to checkpoints in low-level languages. We use this approach to implementRootPPL: a low-level PPL built on CUDA and C++ with OpenMP, providing highly efficient and massively parallel SMC inference. We also introduce a general method ofcompilinguniversal high-level PPLs to PCFGs and illustrate its application when compilingMiking CorePPL—a high-level universal PPL—to RootPPL. The approach is the first to compile a universal PPL to GPUs with SMC inference. We evaluate RootPPL and the CorePPL compiler through a set of real-world experiments in the domains of phylogenetics and epidemiology, demonstrating up to 6$$\times $$×speedups over state-of-the-art PPLs implementing SMC inference.

Publisher

Springer International Publishing

Reference40 articles.

1. CUDA Toolkit $$|$$ NVIDIA Developer. https://developer.nvidia.com/cuda-toolkit (2021), accessed: 2021-09-20

2. GCC, the GNU Compiler Collection - GNU Project. https://gcc.gnu.org/ (2021), accessed: 2021-09-20

3. Home - OpenMP. https://www.openmp.org/ (2021), accessed: 2021-09-20

4. Miking DPPL. https://github.com/miking-lang/miking-dppl (2021), accessed: 2021-12-01

5. PyTorch. https://pytorch.org/ (2021), accessed: 2021-10-11

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3