Formally Validating a Practical Verification Condition Generator

Author:

Parthasarathy Gaurav,Müller Peter,Summers Alexander J.

Abstract

AbstractA program verifier produces reliable results only if both the logic used to justify the program’s correctness is sound, and the implementation of the program verifier is itself correct. Whereas it is common to formally prove soundness of the logic, the implementation of a verifier typically remains unverified. Bugs in verifier implementations may compromise the trustworthiness of successful verification results. Since program verifiers used in practice are complex, evolving software systems, it is generally not feasible to formally verify their implementation.In this paper, we present an alternative approach: we validate successful runs of the widely-used Boogie verifier by producing a certificate which proves correctness of the obtained verification result. Boogie performs a complex series of program translations before ultimately generating a verification condition whose validity should imply the correctness of the input program. We show how to certify three of Boogie’s core transformation phases: the elimination of cyclic control flow paths, the (SSA-like) replacement of assignments by assumptions using fresh variables (passification), and the final generation of verification conditions. Similar translations are employed by other verifiers. Our implementation produces certificates in Isabelle, based on a novel formalisation of the Boogie language.

Publisher

Springer International Publishing

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sound Gradual Verification with Symbolic Execution;Proceedings of the ACM on Programming Languages;2024-01-05

2. A Formalization of Core Why3 in Coq;Proceedings of the ACM on Programming Languages;2024-01-05

3. Assume but Verify: Deductive Verification of Leaked Information in Concurrent Applications;Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications Security;2023-11-15

4. Completeness Thresholds for Memory Safety of Array Traversing Programs;Proceedings of the 12th ACM SIGPLAN International Workshop on the State Of the Art in Program Analysis;2023-06-06

5. A Dafny-based approach to thread-local information flow analysis;2023 IEEE/ACM 11th International Conference on Formal Methods in Software Engineering (FormaliSE);2023-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3