1. Boob, D., Deng, Q., Lan, G.: Stochastic first-order methods for convex and nonconvex functional constrained optimization. Math. Program. 127 (2022)
2. Cao, H., Song, Y., Khan, K.: Convergence of subtangent-based relaxations of non-linear programs. Processes 7(4), 221 (2019). https://doi.org/10.3390/pr7040221
3. Fang, C., Li, C.J., Lin, Z., Zhang, T.: SPIDER: Near-optimal non-convex optimization via stochastic path-integrated differential estimator. In: Advances in Neural Information Processing Systems, pp. 687–697 (2018)
4. Gasnikov, A.V., Nesterov, Y.E.: Universal method for stochastic composite optimization (2016). https://arxiv.org/ftp/arxiv/papers/1604/1604.05275.pdf. Accessed 28 Jan 2021
5. Gerontitis, D., Behera, R., Sahoo, J.K., Stanimirović, P.S.: Improved finite-time zeroing neural network for time-varying division. Stud. Appl. Math. 146(2), 526–549 (2021)